3.304 \(\int \frac{(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=122 \[ \frac{3 a^2 \tanh ^{-1}\left (\frac{\sqrt{c} \cos (e+f x)}{\sqrt{2} \sqrt{c-c \sin (e+f x)}}\right )}{4 \sqrt{2} c^{5/2} f}+\frac{a^2 c \cos ^3(e+f x)}{2 f (c-c \sin (e+f x))^{7/2}}-\frac{3 a^2 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{3/2}} \]

[Out]

(3*a^2*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])])/(4*Sqrt[2]*c^(5/2)*f) + (a^2*c*Cos[
e + f*x]^3)/(2*f*(c - c*Sin[e + f*x])^(7/2)) - (3*a^2*Cos[e + f*x])/(4*c*f*(c - c*Sin[e + f*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.240452, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2736, 2680, 2649, 206} \[ \frac{3 a^2 \tanh ^{-1}\left (\frac{\sqrt{c} \cos (e+f x)}{\sqrt{2} \sqrt{c-c \sin (e+f x)}}\right )}{4 \sqrt{2} c^{5/2} f}+\frac{a^2 c \cos ^3(e+f x)}{2 f (c-c \sin (e+f x))^{7/2}}-\frac{3 a^2 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^2/(c - c*Sin[e + f*x])^(5/2),x]

[Out]

(3*a^2*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])])/(4*Sqrt[2]*c^(5/2)*f) + (a^2*c*Cos[
e + f*x]^3)/(2*f*(c - c*Sin[e + f*x])^(7/2)) - (3*a^2*Cos[e + f*x])/(4*c*f*(c - c*Sin[e + f*x])^(3/2))

Rule 2736

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rule 2680

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(2*g*(
g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(2*m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(2*m +
 p + 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(a+a \sin (e+f x))^2}{(c-c \sin (e+f x))^{5/2}} \, dx &=\left (a^2 c^2\right ) \int \frac{\cos ^4(e+f x)}{(c-c \sin (e+f x))^{9/2}} \, dx\\ &=\frac{a^2 c \cos ^3(e+f x)}{2 f (c-c \sin (e+f x))^{7/2}}-\frac{1}{4} \left (3 a^2\right ) \int \frac{\cos ^2(e+f x)}{(c-c \sin (e+f x))^{5/2}} \, dx\\ &=\frac{a^2 c \cos ^3(e+f x)}{2 f (c-c \sin (e+f x))^{7/2}}-\frac{3 a^2 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{3/2}}+\frac{\left (3 a^2\right ) \int \frac{1}{\sqrt{c-c \sin (e+f x)}} \, dx}{8 c^2}\\ &=\frac{a^2 c \cos ^3(e+f x)}{2 f (c-c \sin (e+f x))^{7/2}}-\frac{3 a^2 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{3/2}}-\frac{\left (3 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{2 c-x^2} \, dx,x,-\frac{c \cos (e+f x)}{\sqrt{c-c \sin (e+f x)}}\right )}{4 c^2 f}\\ &=\frac{3 a^2 \tanh ^{-1}\left (\frac{\sqrt{c} \cos (e+f x)}{\sqrt{2} \sqrt{c-c \sin (e+f x)}}\right )}{4 \sqrt{2} c^{5/2} f}+\frac{a^2 c \cos ^3(e+f x)}{2 f (c-c \sin (e+f x))^{7/2}}-\frac{3 a^2 \cos (e+f x)}{4 c f (c-c \sin (e+f x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 0.960644, size = 163, normalized size = 1.34 \[ \frac{a^2 \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right ) \left (3 \sin \left (\frac{1}{2} (e+f x)\right )+5 \sin \left (\frac{3}{2} (e+f x)\right )+3 \cos \left (\frac{1}{2} (e+f x)\right )-5 \cos \left (\frac{3}{2} (e+f x)\right )+(3+3 i) \sqrt [4]{-1} \tan ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) \sqrt [4]{-1} \left (\tan \left (\frac{1}{4} (e+f x)\right )+1\right )\right ) (4 \sin (e+f x)+\cos (2 (e+f x))-3)\right )}{8 c^2 f (\sin (e+f x)-1)^2 \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^2/(c - c*Sin[e + f*x])^(5/2),x]

[Out]

(a^2*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(3*Cos[(e + f*x)/2] - 5*Cos[(3*(e + f*x))/2] + 3*Sin[(e + f*x)/2] +
 (3 + 3*I)*(-1)^(1/4)*ArcTan[(1/2 + I/2)*(-1)^(1/4)*(1 + Tan[(e + f*x)/4])]*(-3 + Cos[2*(e + f*x)] + 4*Sin[e +
 f*x]) + 5*Sin[(3*(e + f*x))/2]))/(8*c^2*f*(-1 + Sin[e + f*x])^2*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [A]  time = 0.735, size = 191, normalized size = 1.6 \begin{align*} -{\frac{{a}^{2}}{ \left ( -8+8\,\sin \left ( fx+e \right ) \right ) \cos \left ( fx+e \right ) f} \left ( 3\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{c \left ( 1+\sin \left ( fx+e \right ) \right ) }\sqrt{2}}{\sqrt{c}}} \right ) \left ( \sin \left ( fx+e \right ) \right ) ^{2}{c}^{2}-6\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{c \left ( 1+\sin \left ( fx+e \right ) \right ) }\sqrt{2}}{\sqrt{c}}} \right ) \sin \left ( fx+e \right ){c}^{2}+10\, \left ( c \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{3/2}\sqrt{c}+3\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{c \left ( 1+\sin \left ( fx+e \right ) \right ) }\sqrt{2}}{\sqrt{c}}} \right ){c}^{2}-12\,\sqrt{c \left ( 1+\sin \left ( fx+e \right ) \right ) }{c}^{3/2} \right ) \sqrt{c \left ( 1+\sin \left ( fx+e \right ) \right ) }{c}^{-{\frac{9}{2}}}{\frac{1}{\sqrt{c-c\sin \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(5/2),x)

[Out]

-1/8/c^(9/2)*a^2*(3*2^(1/2)*arctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x+e)^2*c^2-6*2^(1/2)*a
rctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x+e)*c^2+10*(c*(1+sin(f*x+e)))^(3/2)*c^(1/2)+3*2^(1
/2)*arctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2))*c^2-12*(c*(1+sin(f*x+e)))^(1/2)*c^(3/2))*(c*(1+sin(f
*x+e)))^(1/2)/(-1+sin(f*x+e))/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^2/(-c*sin(f*x + e) + c)^(5/2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.13205, size = 915, normalized size = 7.5 \begin{align*} \frac{3 \, \sqrt{2}{\left (a^{2} \cos \left (f x + e\right )^{3} + 3 \, a^{2} \cos \left (f x + e\right )^{2} - 2 \, a^{2} \cos \left (f x + e\right ) - 4 \, a^{2} -{\left (a^{2} \cos \left (f x + e\right )^{2} - 2 \, a^{2} \cos \left (f x + e\right ) - 4 \, a^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt{c} \log \left (-\frac{c \cos \left (f x + e\right )^{2} + 2 \, \sqrt{2} \sqrt{-c \sin \left (f x + e\right ) + c} \sqrt{c}{\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) +{\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} +{\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) + 4 \,{\left (5 \, a^{2} \cos \left (f x + e\right )^{2} + a^{2} \cos \left (f x + e\right ) - 4 \, a^{2} -{\left (5 \, a^{2} \cos \left (f x + e\right ) + 4 \, a^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt{-c \sin \left (f x + e\right ) + c}}{16 \,{\left (c^{3} f \cos \left (f x + e\right )^{3} + 3 \, c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) - 4 \, c^{3} f -{\left (c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) - 4 \, c^{3} f\right )} \sin \left (f x + e\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

1/16*(3*sqrt(2)*(a^2*cos(f*x + e)^3 + 3*a^2*cos(f*x + e)^2 - 2*a^2*cos(f*x + e) - 4*a^2 - (a^2*cos(f*x + e)^2
- 2*a^2*cos(f*x + e) - 4*a^2)*sin(f*x + e))*sqrt(c)*log(-(c*cos(f*x + e)^2 + 2*sqrt(2)*sqrt(-c*sin(f*x + e) +
c)*sqrt(c)*(cos(f*x + e) + sin(f*x + e) + 1) + 3*c*cos(f*x + e) + (c*cos(f*x + e) - 2*c)*sin(f*x + e) + 2*c)/(
cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) + 4*(5*a^2*cos(f*x + e)^2 + a^2*cos(f*x
+ e) - 4*a^2 - (5*a^2*cos(f*x + e) + 4*a^2)*sin(f*x + e))*sqrt(-c*sin(f*x + e) + c))/(c^3*f*cos(f*x + e)^3 + 3
*c^3*f*cos(f*x + e)^2 - 2*c^3*f*cos(f*x + e) - 4*c^3*f - (c^3*f*cos(f*x + e)^2 - 2*c^3*f*cos(f*x + e) - 4*c^3*
f)*sin(f*x + e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**2/(c-c*sin(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

sage2